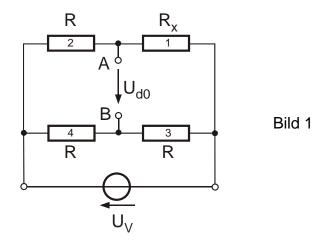
3.1 Ausschlag-Widerstandsmessbrücke

Sachworte: Ausschlag-Widerstandsmessbrücke, Widerstandsmessung, Brückenspannung, widerstandsabhängige Sensoren

Eine von einer Gleichspannung U_V gespeiste Brückenschaltung (Bild 1) besteht aus 3 gleichen Widerständen R und einem veränderlichen Sensorwiderstand R_X .



Zwischen den Klemmen A - B liegt im Leerlauf die Brückendiagonalspannung U_{d0} an.

$$U_{d0} = K \frac{R_x - R}{R_y + R} \cdot U_V$$
 K: Konstante

a) Weisen Sie die gegebene Gleichung durch Rechnung nach und ermitteln Sie die Konstante K.

Im Buch wurde in Kapitel 3.3.1 die allgemeine Formel (3.14) für eine Widerstandsbrücke im Leerlauf abgeleitet.

$$U_{d0} = U_d(I = 0A) = U_V \frac{R_2 R_3 - R_1 R_4}{(R_1 + R_2)(R_3 + R_4)}$$
(1)

Übertragen auf die Schaltung von Bild 1 ergibt sich die Brückenleerlaufspannung U_{d0} zu:

$$U_{d0} = \frac{RR - R_x R}{(R_x + R)(R + R)} U_V = \frac{R - R_x}{(R_x + R)2} U_V = -\frac{1}{2} \cdot \frac{R_x - R}{R_x + R} U_V \implies K = -\frac{1}{2}$$
 (2)

Gl. (2) lässt sich in einer Form mit bezogenen Größen darstellen, die für beliebige Werte von U_V und R_x den gleichen Kurvenverlauf zeigt.

$$\frac{U_{d0}}{U_V} = -\frac{1}{2} \cdot \frac{R_x - R}{R_x + R} = -\frac{1}{2} \cdot \frac{R_x / R - 1}{R_x / R + 1}$$
(3)

b)Berechnen Sie U_{d0} / U_V für R_x = 0 Ω ; R_x = R und $R_x \to \infty \Omega$.

Gl. (3) liefert die Werte:

R_x/R	0	1	$\rightarrow \infty$
U_{d0} / U_{V}	+ 1/2	0	- 1/2

c) Berechnen Sie die normierte Empfindlichkeit E = $d(U_{d0}/U_{V})/d(R_{x}/R)$.

Die Empfindlichkeit eines Messgliedes ist definiert als der Quotient aus der Änderung der Ausgangsgröße (hier: U_{d0}) und der Änderung der Eingangsgröße (hier R_x). Für kleine Änderungen ist eine Näherung durch den Differentialquotienten erlaubt. Entsprechend der Aufgabenstellung ist Gl. (3) zur differenzieren.

$$E = \frac{d(U_{d0}/U_V)}{d(R_x/R)} = \frac{d}{d(R_x/R)} \left(-\frac{1}{2} \cdot \frac{R_x/R - 1}{R_x/R + 1} \right)$$

Mit der Substitution $z = R_x / R$

ergibt sich die Funkion $y = -\frac{1}{2} \cdot \frac{z-1}{z+1} = -\frac{1}{2} \cdot \frac{u}{v}$,

die nach z zu differenzieren ist gemäß:

$$y' = -\frac{1}{2} \cdot \frac{u'v - uv'}{v^2} \Rightarrow y' = -\frac{1}{2} \cdot \frac{1 \cdot (1+z) - (z-1) \cdot 1}{(z+1)^2} = -\frac{1}{(z+1)^2}$$

 $mit \ z = R_x / R \ lautet \ das \ Ergebnis :$

$$E = -\frac{1}{(1 + R_x / R)^2} \tag{4}$$

E stellt die Steigung der Kurve U_{d0}/U_V nach Gl. (3) dar, d.h. $E = \tan \alpha$ mit α als dem Steigungswinkel der Kurve.

Zahlenmäßig ergibt sich:

R_x/R	0	1	$\rightarrow \infty$
$E = tan \alpha$	-1	-1/4	$\rightarrow 0$
lpha in grad	- 45	- 14	0

d)Skizzieren Sie den Verlauf U_{d0}/U_V für $0 < R_x/R < \infty$. Markieren Sie die drei in b) berechneten Kurvenpunkte. Beachten Sie die Steigungswinkel nach c).

In Bild 2a ist der Kurvenverlauf über den gesamten Wertebereich des Widerstandes R_x gezeichnet. Technisch relevant ist jedoch nur ein kleiner Bereich um den so genannten Brückenabgleich $U_d = 0$ V bei $R_x = R_x$, in dem Ausschlagbrücken typischerweise betrieben werden. Zur Verdeutlichung wurde in Bild 2b der Kurvenverlauf nochmals gezoomt dargestellt. Im praktischen Fall ändert z.B. ein Dehnungsmessstreifen seinen Widerstand R_x unter Beanspruchung sogar nur im Promille-Bereich.

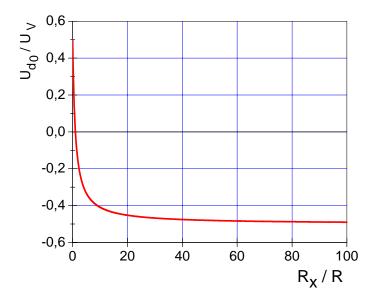


Bild 2a

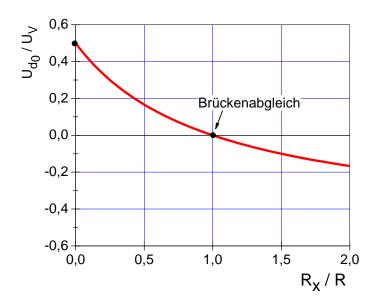
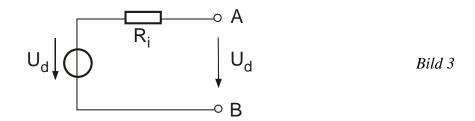


Bild 2b

e)Zeichnen Sie die Ersatzspannungsquelle der Brücke bezüglich der Klemmen A-B mit den Ersatzgrößen U_q und R_i .



f) Ermitteln Sie die Ersatzgrößen Uq und Ri.

Eine Ersatzspannungsquelle ist gekennzeichnet durch die beiden Größen "Ersatzleerlaufspannung U_q " und "Ersatzinnenwiderstand R_i ". Damit lässt sich beispielsweise die Brückenschaltung, die aus einer Spannungsquelle und 4 Widerständen besteht, bzgl. der Klemmen A und B nur durch 2 Größen, nämlich durch U_q und R_i , darstellen.

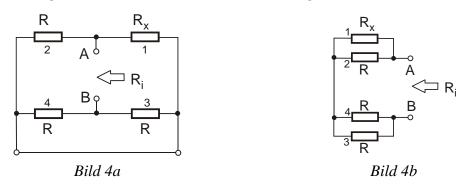
Die Ersatzleerlaufspannung U_q ist definitionsgemäß gleich der Brückenspannung U_{d0} im Leerlauf, also ohne Stromentnahme an den Klemmen A und B. U_{d0} wurde bereits nach Gl. (2) bzw. (3) berechnet und beträgt

$$U_{q} = U_{d}(I = 0A) = U_{d0}$$

$$U_{d0} = -\frac{1}{2} \cdot \frac{R_{x} - R}{R_{x} + R} \cdot U_{V} = -\frac{1}{2} \cdot \frac{R_{x} / R - 1}{R_{x} / R + 1} \cdot U_{V}$$
(5)

Um den Ersatzinnenwiderstand R_i einer Schaltung zu ermitteln, werden alle in der Schaltung vorhandenen Spannungsquellen als Kurzschluss und alle vorhandenen Stromquellen als Unterbrechung betrachtet. Im vorliegenden Fall, mit nur 1 Spannungsquelle U_V , ist die Situation sehr einfach. U_V wird durch einen Kurzschluss überbrückt. Dann schaut man quasi an den beiden Klemmen A und B in die Schaltung hinein und bestimmt den wirkenden Widerstand als R_i .

Wird dementsprechend in Bild 1 die Spannungsquelle U_V überbrückt, erhält man Bild 4a. Zur Berechnung von R_i wird dieses Bild noch etwas umgezeichnet (Bild 4b).



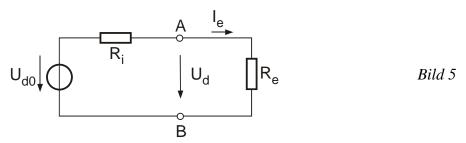
Nach Bild 4b besteht der Ersatzinnenwiderstand R_i aus der Serienschaltung zweier Parallelschaltungen, die von R_x und R sowie R und R gebildet werden.

$$R_{i} = \frac{R_{x} \cdot R}{R_{x} + R} + \frac{R \cdot R}{R + R} = \frac{R_{x}}{R_{x} / R + I} + \frac{R}{2}$$
 (6)

g)An den Klemmen A – B wird nun ein Spannungsmesser (Eingangswiderstand R_e) angeschlossen, um die Diagonalspannung U_d zu verstärken.

g1)Weshalb kann bei diesem Messverfahren ein Messfehler entstehen?

Bei der Belastung der Brücke durch einen Lastwiderstand R_e fließt durch die Klemmen A und B ein Strom I_e , der am Innenwiderstand R_i der Brücke einen unerwünschten Spannungsabfall verursacht. Deshalb ist die Brückenspannung U_d bei Belastung der Brücke bei $I_e > 0$ A kleiner als die unbelastete Brückenspannung U_{d0} bei $I_e = 0$ A; es entsteht somit ein Messfehler.



g2) Geben Sie den für R_e zulässigen Bereich zahlenmäßig in Ω an, wenn der durch R_e verursachte Messfehler betragsmäßig unter 1% bleiben soll. Verwenden Sie dabei die Zahlenwerte $R = 100~\Omega$; $R_x = 98~\Omega~...102~\Omega$.

Entsprechend Bild 5 lässt sich die Spannung U_d am einfachsten mit Hilfe der Spannungsteilerformel berechnen.

$$U_d = \frac{R_e}{R_i + R_e} U_{d0} \tag{7}$$

Um den gegebenen relative Messfehler F_{rel} von betragsmäßig 1 % in die Rechnung einzubringen, ist zunächst der absolute Messfehler F_{abs} zu ermitteln.

$$F_{abs} = U_d - U_{d0} = \frac{R_e}{R_i + R_e} U_{d0} - U_{d0} = -\left(I - \frac{R_e}{R_i + R_e}\right) U_{d0}$$
 (8)

Mit U_{d0} als Bezugswert BZW lautet der relative Fehler F_{rel} :

$$F_{rel} = \frac{F_{abs}}{BZW} = \frac{F_{abs}}{U_{d0}} = -\left(1 - \frac{R_e}{R_i + R_e}\right) \tag{9}$$

Der Term $R_e/(R_i+R_e)$ ist stets kleiner als 1. Die Fehler F_{abs} und F_{rel} sind also stets negativ, d.h. die Spannung U_d wird stets als zu klein gemessen.

Gl. (9) nach R_e aufgelöst führt zur gesuchten Dimensionierungsvorschrift von R_e ,

$$R_e = \frac{F_{rel} + I}{-F_{rel}} R_i \tag{10}$$

die sich für kleine Werte von $F_{rel} \ll 1$ vereinfachen lässt zu:

$$R_e \approx \frac{1}{-F_{rel}} R_i \tag{11}$$

Nachdem F_{rel} stets negativ ist, lässt sich betragsmäßig weiterrechnen und damit der zulässige Bereich von R_e angeben.

$$R_e > \frac{1}{|F_{rel\ max}|} \cdot R_{i\,min} \tag{12}$$

Der Innenwiderstand R_i der Brücke lässt sich mit Gl. (6) berechnen.

$$R_{i} = \frac{R_{x}}{R_{x}/R + 1} + \frac{R}{2}$$

$$R_{i \min} = \frac{R_{x \min}}{R_{x \min}/R + 1} + \frac{R}{2} = \frac{98 \Omega}{98 \Omega/100 \Omega + 1} + \frac{100 \Omega}{2} = 99,5 \Omega$$

Mit Gl. (12) lässt sich dann die gesuchte Dimensionierung zahlenmäßig angeben:

$$R_e > \frac{1}{0.01}99.5 \Omega$$

$$R_e > 9950 \Omega$$
(13)

In der Praxis sind die Widerstände R und R_x mit Toleranzen behaftet, sodass eine näherungsweise Rechnung mit $R_i \approx R$, d.h. $R_{i \ min} \approx 100 \ \Omega$ ausreichend genau wäre.

h)Berechnen Sie näherungsweise die Brückenspannung $U_{d0} \approx f(U_V, \Delta R/R)$.

Die durch die Messgröße verursachten Änderungen ΔR des Sensorwiderstandes R_x sind sehr gering ($R_x = R + \Delta R$ mit $\Delta R / R << 1$). Damit sind bei der Berechnung der Brückendiagonalspannung Näherungen erlaubt und wegen des geringeren Rechenaufwandes auch vorteilhaft.

Die Beziehung $R_x = R + \Delta R$ wird in Gl. (5) eingesetzt.

$$U_{d0} = -\frac{1}{2} \cdot \frac{R_x / R - 1}{R_x / R + 1} \cdot U_V = -\frac{1}{2} \cdot \frac{1 + \Delta R / R - 1}{1 + \Delta R / R + 1} \cdot U_V = -\frac{1}{2} \cdot \frac{\Delta R / R}{2 + \Delta R / R} \cdot U_V$$

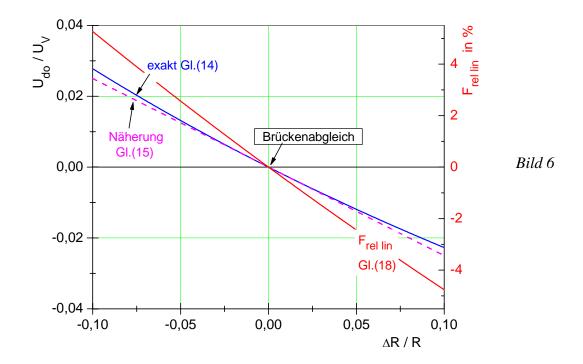
$$U_{d0} = -\frac{1}{4} \cdot \frac{\frac{\Delta R}{R}}{1 + \frac{1}{2} \frac{\Delta R}{R}} \cdot U_V$$
(14)

Für eine näherungsweise Berechnung darf im Nenner der $\Delta R/R$ -Term gegenüber 1 vernachlässigt werden:

$$U_{d0} \approx -\frac{1}{4} \cdot \frac{\Delta R}{R} U_V \tag{15}$$

Gl. (15) liefert die wichtige Aussage, dass in einer sog. "Viertelbrücke", in der nur 1 Sensor eingesetzt wird, die Brückendiagonalspannung im Leerlauf annähernd proportional zur relativen Änderung $\Delta R/R$ ist.

i) Tragen Sie für Änderungen $\Delta R/R = -0.1 \dots + 0.1$ den <u>exakten</u> Verlauf der auf die Versorgungsspannung bezogenen Brückendiagonalspannung $U_{d0}/U_V = f(\Delta R/R)$ sowie den <u>angenäherten</u> Verlauf $U_{d0}/U_V \approx f(\Delta R/R)$ in ein gemeinsames Diagramm ein.



j) Nennen Sie zwei widerstandsabhängige Sensoren, die jeweils eine Kennlinie $R_x = R_0$ (1+ EM) aufweisen, wobei E die bezogene Sensorempfindlichkeit und M die Messgröße bedeuten. Geben Sie tabellarisch für den jeweiligen Sensor die Messgröße und ihren Einheit sowie die wesentlichen Daten des Sensors an.

	Sensor 1	Sensor 2
Sensorbezeichnung	Dehnungsmessstreifen DMS	Widerstandsthermometer Pt100; Pt1000
Messgröße M + Einheit	Dehnung ε , dimensionslos	Temperatur 9 in °C
Kennlinie	$R = R_0 \left(1 + k\varepsilon \right)$	$R = R_0 \left(1 + \alpha \mathcal{G} \right)$
Messbereich + Einheit	einige μm/mm	- 200 °C + 600 ° C
R_0 als Zahlenwert + Einheit	typisch 100 Ω , 600 Ω	100 Ω; 1000 Ω
E als Zahlenwert + Einheit	$E = \frac{\Delta R / R_0}{\varepsilon} = k$ $Metall - DMS $	$E = \frac{\Delta R / R_0}{9} = \alpha$ $\alpha = 3.85 \cdot 10^{-3} \text{ K}^{-1}$

Die folgende Aufgabe ist Interessierten, die sich gerne mit Fehlerrechnung beschäftigen, "gewidmet". Sie werden erkennen, dass insbesondere die Berechnung der (sehr kleinen!) Linearitätsfehler einen großen Aufwand erfordert und naturgemäß nur bescheidene Erkenntnisse liefert. Schließlich beschäftigen wir uns ja mit technisch sinnvollen Messfehlern, die im Bereich von Prozenten und darunter liegen.

k)Berechnen Sie den relativen Linearitätsfehler F_{lin} der Brückenleerlaufspannung U_{d0} in Abhängigkeit von $\Delta R/R$. Tragen Sie dessen Verlauf in das zuletzt gezeichnete Diagramm ein.

Verwenden Sie als Sollwert die durch den Brückenabgleichpunkt U_{d0} = 0 V verlaufende Gerade, die in diesem Punkt die Steigung des exakten U_{d0} -Verlaufes hat.

Zunächst ist die Gleichung der Sollwert-Geraden zu bestimmen. Diese hat ihren Nulldurchgang bei $\Delta R/R = 0$ entsprechend $R_x = R$ und besitzt in diesem Punkt die Steigung m, die nach Gl. (4) berechnet wird.

$$m = U_V \cdot E \Big|_{R_X = R} = -\frac{U_V}{(1 + R_X / R)^2} \Big|_{R_Y = R} = -\frac{1}{4} U_V$$
 (16)

Damit lautet die Sollwertgerade mir $\Delta R/R$ als Variablen:

$$U_{d0} = -\frac{1}{4} \cdot \frac{\Delta R}{R} \cdot U_V \tag{17}$$

Dieses Ergebnis hätte man durch Überlegung direkt aus der Näherung von Gl. (15) bekommen können. Diese Näherung stellt eine Gerade dar, die im Brückenabgleichspunkt $U_d = 0$ V dieselbe Steigung und denselben Funktionswert wie die Sollwertgeraden aufweist.

Der relative Linearitätsfehler F_{lin} ergibt sich, indem die Differenz von Gl. (14) und (17) durch den Sollwert nach Gl. (17) dividiert wird.

$$F_{lin} = \frac{\left(-\frac{1}{4} \cdot \frac{\Delta R}{R} U_V\right) - \left(-\frac{1}{4} \cdot \frac{\Delta R}{R} U_V\right)}{-\frac{1}{4} \cdot \frac{\Delta R}{R} U_V} = \frac{1}{1 + \frac{1}{2} \frac{\Delta R}{R}} - 1$$

$$(18)$$

Für kleine Änderungen $\Delta R/R \ll 1$ ergibt sich mit der Näherung

$$(1+\varepsilon)^n \approx 1+n\varepsilon \quad mit \ \varepsilon = \Delta R/R \ll 1$$
 (19)

eine Vereinfachung von Gl. (18).

$$F_{rel \, lin} = \left(1 + \frac{1}{2} \frac{\Delta R}{R}\right)^{-1} - 1 \approx 1 - \frac{1}{2} \frac{\Delta R}{R} - 1$$

$$F_{rel \, lin} \approx -\frac{1}{2} \frac{\Delta R}{R} \quad oder \ prozentual: \quad F_{rel \, lin} \approx -\frac{1}{2} \cdot \frac{\Delta R}{R} \cdot 100 \% \tag{20}$$

Der Verlauf von $F_{rel \, lin}$ nach Gl. (18) ist in Bild 6 eingetragen. Dort ist die für $F_{rel \, lin}$ gültige Ordinatenskalierung am rechten Diagrammrand aufgetragen.

